Equipped graphs and modular lattices attached to them
نویسندگان
چکیده
منابع مشابه
Deformations Problems Attached to Modular
be the semisimple Galois representation associated to f by Deligne and Serre; here S is any finite set of primes containing all primes dividing N and GQ,S∪{l} is the Galois group of the maximal extension of Q unramified outside S ∪{l}. The representation ρ̄f,λ is absolutely irreducible for almost all λ; for such λ let R S f,λ denote the universal deformation ring parameterizing lifts of ρ̄f,λ (up...
متن کاملSIGNLESS LAPLACIAN SPECTRAL MOMENTS OF GRAPHS AND ORDERING SOME GRAPHS WITH RESPECT TO THEM
Let $G = (V, E)$ be a simple graph. Denote by $D(G)$ the diagonal matrix $diag(d_1,cdots,d_n)$, where $d_i$ is the degree of vertex $i$ and $A(G)$ the adjacency matrix of $G$. The signless Laplacianmatrix of $G$ is $Q(G) = D(G) + A(G)$ and the $k-$th signless Laplacian spectral moment of graph $G$ is defined as $T_k(G)=sum_{i=1}^{n}q_i^{k}$, $kgeqslant 0$, where $q_1$,$q_2$, $cdots$, $q_n$ ...
متن کاملAbout Free Lattices and Free Modular Lattices
Ralph Freese Department of Mathematics University of Hawaii at Manoa Honolulu, Hawaii 96822 In this paper we look at some of the problems on free lattices and free modular lattices which are of an order theoretic nature. We review some of the known results, give same new results, and present several open problems. Every countable partially ordered set can be order embedded into a countable free...
متن کاملlocally modular lattices and locally distributive lattices
A locally modular (resp. locally distributive) lattice is a lattice with a congruence relation and each of whose equivalence class has sufficiently many elements and is a modular (resp. distributive) sublattice. Both the lattice of all closed subspaces of a locally convex space and the lattice of projections of a locally finite von Neumann algebra are locally modular. The lattice of all /^-topo...
متن کاملJacobi identities, modular lattices, and modular towers
We give first a simple proof of a generalized Jacobi identity for n-dimensional odd diagonal lattices which specializes to the classical Jacobi identity for the lattice Z2. For Z +√ Z, it recovers a one-parameter family of Jacobi identities discovered recently by Chan, Chua and Solé, used to deduce two quadratically converging algorithms for computing π corresponding to elliptic functions for t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Banach Center Publications
سال: 1990
ISSN: 0137-6934,1730-6299
DOI: 10.4064/-26-1-385-405